(Copyright 2000 iDevResource.com Ltd.

What is Async COM?

Windows 2000 now comes with asynchronous COM, or to give it its more accurate name non-blocking calls. It was introduced to solve the problem of client and RPC threads blocking while a COM call is active.

The problem is this: COM is synchronous, so it means that when a client makes a method request the client thread is blocked until the server has handled that request. This means that, for example, if the client thread is a UI thread it could affect how often a window updates, giving a nasty jerky effect.

On the server side things are a little better, but still has problems. The server can use a multi threaded apartment to allow RPC to maintain a pool of threads (at 'normal' priority) to accept COM requests. However, it is those actual threads that are used to execute the object method, so it means that when an RPC thread is executing a COM request it is not available to accept another call.

Furthermore, if RPC determines that the server is under stress it will create extra threads to handle the requests, this gives extra 'availability' because each of the client requests will be accepted, but degrades performance because more threads require more work by the processors in your system. For this reason RPC will make sure that once the time of stress is over it will kill the extra threads to keep the pool to a manageable size. However, RPC does not allow you to specify a minimum or maximum number of threads that it will use, nor the priority of those threads.

Non-blocking calls on the server-side allows the developer to implement a thread pool specifically to execute the async methods freeing the RPC threads with the task of merely accepting the method calls and then placing them in a work queue. Since you have the responsibility of implementing the thread pool it means that you can decide the number of threads in the pool and the priority of those threads. If you don't want this extra work, you can use QueueUserWorkItem() to use a system provided thread pool (however, in this case you do not have any control over the priority of the threads, nor how many threads are created).

The great thing about both server-side and client-side non-blocking calls is that the same calls are made 'on the wire' whether blocking or non-blocking calls are made. Also, the client does not care if the server implements non-blocking calls and the server does not care if it is called using a non-blocking call. All of the 'magic' is performed by the proxy-stub files, which means that the interface cannot be type library marshalled.

To use non-blocking calls the interface must be described in IDL using async_iid() attribute. This basically tells MIDL that it should generate proxy-stub code for the interface when it is called synchronously and asynchronously. The proxy object itself will be called for just the synchronous call. To call the object asynchronously the client must query the proxy for the ICallFactory interface and call CreateCall(). This instructs the proxy to create a separate object called a call object, which implements the proxy non-blocking interface.

The asynchronous interface has two methods for every method that is on the synchronous interface: for each there is a Begin_ method and a Finish_ method. The Begin_ method has parameters for all of the [in] and [in, out] parameters on the synchronous method and the Finish_ method has parameters for all of the [in, out] and [out] parameters, and of course, the return value of Finish_ is the actual return value of the method. So for example, if you have a method like this on the synchronous interface:

HRESULT GetStudent([in] UINT uStudentID, [out] IStudent** ppStudent);

the asynchronous interface will have these two methods:

HRESULT Begin_GetStudent([in] UINT uStudentID);

HRESULT Finish_GetStudent([out] IStudent** ppStudent);

When the client calls the Begin_ method it instructs the call object to make the call, however, the Begin_ method will return immediately and hence the HRESULT it returns will have no bearing on whether the method was successfully made. When the actual method has completed, the call object will be informed of the result of the call (all the [out] parameters and the HRESULT) which the client can obtain by calling the Finish_ method. If the client calls Finish_ before the method has completed the client thread will block, so it is best to perform some other processing before calling the Finish_ method.

The call object also implements ISynchronize that the client can call to poll to see if the method has completed, and the client can also provide its own implementation of this interface to provide a Win32 synchronization object which the call object will signal on method completion and the client thread can wait on this object using the normal Win32 wait methods. Further, the call object implements ICancelMethodCalls which has methods that can be called to cancel a pending method.

On the server-side, the component should implement ICallFactory to handle non-blocking calls. COM will query for this interface to see if the component can be called asynchronously. It will call the interface to create a call object specific to the component which COM will aggregate into a synchronization object that COM maintains to manage the return call back to the client. Your code must implement the call object and hence the asynchronous version of the interface.

When this call object is called to perform a non-blocking call, an RPC thread will be used to call the Begin_ method. Your code should implement this by queuing the request into some thread pool that you have implemented and then return immediately. This will free the RPC thread to take another call.

As I mentioned earlier, you have to implement a thread pool and your thread function should use the synchronization object created by COM to indicate that it has finished its work. This prompts the system to call the Finish_ method to get the return values from the call and return them back to the client.

As a post script, you cannot use asynchronous calls on COM+ configured components, COM+ will refuse to call your object for a call object. However, this is not such a great problem because a configured component can call an unconfigured component asynchronously.

